Mean-Value Theorem of the Riemann Zeta-Function Over Short Intervals
نویسندگان
چکیده
منابع مشابه
On the Mean Values of the Riemann Zeta-function in Short Intervals
It is proved that, for T ε ≤ G = G(T) ≤
متن کاملOn the mean square of the Riemann zeta-function in short intervals
It is proved that, for T ε 6 G = G(T ) 6 2 √ T , ∫︁ 2T T (︁ I1(t+G,G)− I1(t, G) )︁2 dt = TG 3 ∑︁ j=0 aj log (︁√ T G )︁ +Oε(T 1+εG1/2 + T 1/2+εG2) with some explicitly computable constants aj (a3 > 0) where, for fixed k ∈ N, Ik(t, G) = 1 √ π ∫︁ ∞ −∞ |ζ( 1 2 + it+ iu)| 2ke−(u/G) 2 du. The generalizations to the mean square of I1(t+U,G)−I1(t, G) over [T, T+H] and the estimation of the mean square ...
متن کاملOn the Divisor Function and the Riemann Zeta-function in Short Intervals
We obtain, for T ε ≤ U = U(T ) ≤ T 1/2−ε, asymptotic formulas for Z 2T T (E(t+ U)− E(t)) dt, Z 2T T (∆(t+ U)−∆(t)) dt, where ∆(x) is the error term in the classical divisor problem, and E(T ) is the error term in the mean square formula for |ζ( 1 2 + it)|. Upper bounds of the form Oε(T 1+εU2) for the above integrals with biquadrates instead of square are shown to hold for T 3/8 ≤ U = U(T ) ≪ T ...
متن کاملMean Value of Hardy Sums over Short Intervals
The main purpose of this paper is to study the mean value properties of certain Hardy sums over short intervals by using the mean value theorems of the Dirichlet L-functions, and to give two interesting asymptotic formulae.
متن کاملA Discrete Mean Value of the Derivative of the Riemann Zeta Function
In this article we compute a discrete mean value of the derivative of the Riemann zeta function. This mean value will be important for several applications concerning the size of ζ(ρ) where ζ(s) is the Riemann zeta function and ρ is a non-trivial zero of the Riemann zeta function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1993
ISSN: 0022-314X
DOI: 10.1006/jnth.1993.1081