Mean-Value Theorem of the Riemann Zeta-Function Over Short Intervals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the mean square of the Riemann zeta-function in short intervals

It is proved that, for T ε 6 G = G(T ) 6 2 √ T , ∫︁ 2T T (︁ I1(t+G,G)− I1(t, G) )︁2 dt = TG 3 ∑︁ j=0 aj log (︁√ T G )︁ +Oε(T 1+εG1/2 + T 1/2+εG2) with some explicitly computable constants aj (a3 > 0) where, for fixed k ∈ N, Ik(t, G) = 1 √ π ∫︁ ∞ −∞ |ζ( 1 2 + it+ iu)| 2ke−(u/G) 2 du. The generalizations to the mean square of I1(t+U,G)−I1(t, G) over [T, T+H] and the estimation of the mean square ...

متن کامل

On the Divisor Function and the Riemann Zeta-function in Short Intervals

We obtain, for T ε ≤ U = U(T ) ≤ T 1/2−ε, asymptotic formulas for Z 2T T (E(t+ U)− E(t)) dt, Z 2T T (∆(t+ U)−∆(t)) dt, where ∆(x) is the error term in the classical divisor problem, and E(T ) is the error term in the mean square formula for |ζ( 1 2 + it)|. Upper bounds of the form Oε(T 1+εU2) for the above integrals with biquadrates instead of square are shown to hold for T 3/8 ≤ U = U(T ) ≪ T ...

متن کامل

Mean Value of Hardy Sums over Short Intervals

The main purpose of this paper is to study the mean value properties of certain Hardy sums over short intervals by using the mean value theorems of the Dirichlet L-functions, and to give two interesting asymptotic formulae.

متن کامل

A Discrete Mean Value of the Derivative of the Riemann Zeta Function

In this article we compute a discrete mean value of the derivative of the Riemann zeta function. This mean value will be important for several applications concerning the size of ζ(ρ) where ζ(s) is the Riemann zeta function and ρ is a non-trivial zero of the Riemann zeta function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1993

ISSN: 0022-314X

DOI: 10.1006/jnth.1993.1081